
VMM Hackers Guide - Creating Smart Scenarios With Atomic Generators
Thursday, 24 December 2009 16:59

VMM ships with some pretty useful built-in components and applications. VMM''s Atomic
Generator is probably one of the most powerful ones, yet it's pretty basic. It can definitely help
you generate a flow of random items but it was not intended for generation of sequences. A
sequence (a.k.a scenario) is a set of items that have some sort of correlation between them. For
example - a set of 10 transactions with incremental addresses, or a set of 3 packets where the
first one is always short and the last one is always long.

 VMM addresses the need for smart scenarios with the "VMM Scenario Generator" - a separate
generator - but integrating this component will require some work to get it up and running
smoothly with the rest of your environment. Man, if we could just use atomic generators to
define and create scenario as well... Guess what? here's a quick way to do this in your test
program, with no special preparations and no learning curve.

The idea here is to leverage the atomic generation architecture that we already have to drive
our own sequences, and we do this by first shutting down the atomic generator (see here how
to do this in a more stylish way). We then take an array of items that we prepared in advanced
(i.e. the sequence) and inject these items one by one into the output channel of the atomic
generator. As a matter of fact, atomic generators implicitly encourage this kind of hack by
supplying the inject() function in their API. With this approach the entire environment stays
intact, while we get what we want with no extra effort and no extra maintenance of unnecessary
generators.

 In this little example here we create a sequence of 10 transactions with incremental addresses.
If you get the hang of it, you can easily create smarter sequences using the same technique.

 {code}
 program test;
 ...

 // preparing the sequence
 // 10 transactions, address incrementing by 1
 trans seq1[];

 task gen_seq1();
 seq1 = new[10];

 1 / 3

index.php/systemverilog/32-vmm-hackers-guide-shutting-down-atomic-generators.html

VMM Hackers Guide - Creating Smart Scenarios With Atomic Generators
Thursday, 24 December 2009 16:59

 foreach (seq1[i]) begin
 seq1[i] = new();
 seq1[i].randomize with {
 address == 1000 + i;
 };
 end
 endtask

 ...

 initial begin
 bit dropped;
 ...
 // need to stop automatic generation
 env.start();
 env.trans_gen.stop_xactor();
 ...
 // creating the sequence
 gen_seq1();

 // launching a non blocking thread that will
 // inject our sequence
 fork
 foreach(seq1[i]) begin
 env.trans_gen.inject(seq1[i]), dropped);
 end
 join_none
 ...

 env.run();

 end

 endprogram
 {/code}

We'd love to hear your comments! email us at mail@thinkverification.com, or simply fill in your
comment below.

 2 / 3

VMM Hackers Guide - Creating Smart Scenarios With Atomic Generators
Thursday, 24 December 2009 16:59

 3 / 3

