Home Articles SystemVerilog Method Manipulation In SV and e

Search

Method Manipulation In SV and e PDF Print E-mail
User Rating: / 5
PoorBest 
Thursday, 24 December 2009 16:46

If you're familiar with SystemVerilog and taking your first steps in e (or vice versa) you might find this useful. Here are some of the most common method manipulations that you''ll need to master and how you should go about implementing them in e and SV:

 

Before we dive in - here's the reference code for the examples we're going to show you.

// ** e **
struct my_struct {
 my_function() is {};
 my_task1()@sys.any is {};
 my_task2()@sys.any is {};
 };
// ** SystemVerilog **
class parent;
 // must be virtual
 virtual function my_function();
 endfunction
 virtual task my_task1();
 endtask
 virtual task my_task2();
 endtask
 endclass

OK, now let''s see how to implement the most common method manipulations in each language:


Extending methods - adding more functionality at the end:

// ** e **
 extend parent {
 my_function() is also {
 j++;
 };
 };
 
 // ** SV **
 class child extends parent;
 virtual function my_function();
 super.my_function();
 j++;
 endfunction;
 endclass


Extending methods - adding stuff to the beginning of a method:

// ** e **
 extend parent {
 my_function() is first {
 j++;
 };
 };
 
 // ** SV **
 class child extends parent;
 virtual function my_function();
 j++;
 super.my_function();
 endfunction;
 endclass


Overriding a method:

// ** e **
 extend parent {
 my_function() is only {
 j++;
 };
 };
 
 // ** SV **
 class child extends parent;
 virtual function my_function();
 j++;
 endfunction;
 endclass


Launching parallel threads - parent process not blocked:

// ** e ** 
 foo()@sys.any is {
 start my_task1();
 start my_task2();
 };
 
 // ** SV **
 task foo();
 fork begin 
 my_task1();
 my_task2();
 join_none; 
 endfunction


Launching parallel threads - parent process blocked until shortest thread completes:

// ** e ** 
 foo()@sys.any is {
 first of {
 { my_task1(); };
 { my_task2(); };
 };
 };
 
 // ** SV **
 function foo();
 fork begin 
 my_task1();
 my_task2();
 join_any;
 disable fork;    // remove if you don''t want to kill the longer task prematurely
 endfunction


Launching parallel threads - parent process blocked until all threads are finished:

// ** e ** 
 foo()@sys.any is {
 all of {
 { my_task1(); };
 { my_task2(); };
 };
 };
 
 // ** SV **
 function foo();
 fork begin 
 my_task1();
 my_task2();
 join;
 endfunction

 

 
More articles :

» VMM Hackers Guide - Default Behavior For Your BFM

Here's a short tutorial on how to implement a default behavior for your BFM using VMM. Some protocols require constant activity on their interface even when you don't have any data to transmit. This means you must have a mechanism that drives idle...

» To Do List 2010

Introducing Philip Americus - a new guest blogger here on Think Verification. Phil is an ASIC veteran who's worked with every phase of ASIC design - from initial concept to tapeout, with an emphasis on verification, including management of both HW...

» Read/Write Registers From Everywhere

Here’s something for the less experienced verifiers out there. I’ve been asked to help with this issue several times in the past so I guess some of you will find it useful.

» Get On The Buss

Wow, it’s been a while since we last had a good old techie talk about Specman so why not now? Today I’d like to focus on applying reuse to Specman external ports. Very much like little caterpillars, DUTs often have tens or even hundreds of pins...

» UVM Users: Here Are Some Great Tips [Video]

A couple of years ago I wrote here about how the UVM was becoming the next big thing in the verification world.And guess what? I was right. Not that it was too hard to predict... but anyway, the industry has finally standardized on language (SV) and...

Comments  

 
0 #1 2010-04-17 16:43
Very simple and very informative article.
Quote
 

Add comment


Security code
Refresh

Copyright © 2019 Think Verification - Tips & Insights on ASIC Verification. All Rights Reserved.
Joomla! is Free Software released under the GNU/GPL License.